Privacy-Enhancing Technologies: Challenges and
Practical Solutions with FHE

White Paper

Tolun Tosun, Erkay Savas

December 2025

Abstract

The use of big data has led to many breakthroughs in the Artificial
Intelligence (AI) space. However, it also raised privacy concerns. The
data being processed are often personal and sensitive. Privacy-Enhancing
Technologies (PETS) help to keep data safe while still giving the intended
service. Consequently, PETs play a critical role in complying with data
protection regulations such as GDPR. PETSs are developed under various
trust models. Key challenges in those designs include preventing data
leakage during computation, performance overhead, development com-
plexity. Fully Homomorphic Encryption (FHE) stands out as a promising
technology for enabling PETs. In this white paper, we evaluate FHE in
the context of PETSs, highlighting its strengths and discussing the open
challenges that remain for its practical deployment.

1 Introduction

The growth of data-driven systems increased the need for protecting the pri-
vacy of individuals from whom the data are collected. Modern applications in
healthcare, finance, cloud computing, machine learning utilize sensitive data
that cannot be freely shared. For example, a lung x-ray data set collected in a
hospital from the patients are highly sensitive information, while it is extremely
valuable for developing statistical models for medical diagnosis. Classical data
protection approaches such as encryption does not solve these issues. Because
the data is typically decrypted for processing, so the data is exposed to the
potential adversaries. For example, a cloud service provider which hosts the
application can directly access data in plaintext form.

Privacy-Enhancing Technologies (PETs) address these challenges by en-
abling data processing while minimizing the leakage of sensitive information.
PETs generally provide either cryptographic or statistical methods to reduce
or eliminate the need for accessing plaintext data and relying on trusted third
parties. A common statistical technique that is considered as a PET is data



anonymization [16]. Regulations such as GDPR impose stricter requirements on
data handling. Consequently, practical PET constructions are getting increas-
ing attention from both researchers and industry, and they are being considered
for real-world deployment.

Among PETSs, Fully Homomorphic Encryption (FHE) is one of the outstand-
ing solutions. However, it is also a technically demanding approach. FHE is a
special encryption technique, which enables arbitrary computation on encrypted
data. The results of these computations remain in encrypted form that can only
be decrypted by authorized parties. This capability immediately changes the
trust model of outsourced computation, as the data owners can leverage exter-
nal services such as cloud services, without revealing the content of their data
which may hold sensitive information. However, despite significant advances in
recent years, FHE continues to face notable challenges such as its performance.

This white paper discusses the key challenges that arise in privacy-preserving
computation and evaluates FHE as a practical solution within the PET context.
We discuss the security guarantees offered by FHE, analyze its limitations and
deployment constraints.

2 PET Problem Space

The design and development of PETs depend on a set of fundamental chal-
lenges that arise when sensitive data must be processed beyond trust bound-
aries. These challenges are not cryptographic in nature. Indeed, they reflect
a combination of security and privacy requirements, system constraints, and
practical considerations related to the feasibility of the solutions solutions. A
good understanding of this problem space is essential for evaluating the different
PETs, including FHE.

2.1 Data Exposure During Computation

Traditional security mechanisms are effective for protecting data when it is
stored or during its transmittion. However, they generally assume that com-
putations are performed on plaintext data in a trusted environment. This as-
sumption is unrealistic in modern scenarios such as cloud computing, outsourced
data analysis, and collaborative processing between different organizations. For
example, in Al tasks, training or running inference on machine learning models
in the cloud often involves sensitive or proprietary data. In these scenarios, the
classical symmetric key and public key cryptography protects the data during
its transfer to the cloud server. However, the data becomes vulnerable since it
is decrypted for processing.

2.2 Trust Assumptions and Threat Models

A key challenge in PET design is the definition of trust assumptions. Systems
may include untrusted computation servers, semi-honest parties, adversaries



with malicious capabilities. A frequently used threat model is the honest-but-
curious model [20]. In this model, the adversary is assumed to follow the given
protocol correctly, while attempting to discover sensitive information by watch-
ing intermediate data. Considered threat model affects both the security guar-
antees and the performance overhead of a given solution. Consequently, PETSs
must be evaluated only on their theoretical security. Whether their trust as-
sumptions align with real-world deployment scenarios should also be considered.

2.3 Performance and Scalability Constraints

Privacy-preserving computation usually introduces significant computational
and communication overhead compared to plaintext processing, such as in-
creased latency, memory usage and energy consumption, and reduced through-
put. Because of these overheads, PETSs can be impractical for certain applica-
tions such as large-scale or real-time ones. Scalability challenges are particularly
considered in settings involving complex computations, large datasets, or mul-
tiple interacting parties. Performance considerations are often the primary bot-
tleneck in the adoption of PETSs, although the solutions achieve strong privacy
guarantees.

2.4 Accuracy and Functional Effectiveness

Many applications need precise numerical calculations, complex control flow, or
advanced machine learning operations. PETs can sometimes reduce the pre-
cision, limit the types of computations that can be done efficiently, require
approximations or even changes how computations are performed. These lim-
itations create a trade-off between privacy and accuracy. A stronger privacy
is often achieved with lower accuracy. Differential privacy [9] is a well known
example such trade-off. This approach protects privacy by perturbing the query
results to the database by intentionally adding noise. The added noise is con-
figured by a privacy parameter. Understanding these trade-offs is important to
decide if a PET is suitable for a specific application or not.

2.5 Development Complexity

Beyond security and privacy feasibility, PETs must integrate with existing soft-
ware stacks, and data pipelines. Processes such as key management, developer
tools, and debugging support have a high impact on the practicality of de-
ployment. Solutions, which require specialized expertise or extensive system
redesign, may face barriers for adoption of them, particularly in industrial en-
vironments as reliability and maintainability are critical.

2.6 Evaluation Criteria for PETs

The challenges outlined above introduces a set of evaluation criteria for PETs:



e Trust assumptions: reliance on single or multiple parties, and whether
these are semi-honest or malicious.

e Privacy: protection level against defined adversaries.

e Performance: throughput, latency, scalability, and also energy efficiency
drawbacks.

e Accuracy: whether the results of computations are correct.

e Deployability: development and integration effort, development tools, and
operational cost.

These criteria offer a way to analyze PETs and show that no one method
provides a universal solution. In the next sections, we explore FHE with this
perspective, focusing on its distinct advantages and its practical drawbacks in
the wider PET context.

3 Fully Homomorphic Encryption (FHE)

Homomorphic Encryption (HE) enables computation on encrypted data. It
produces encrypted outputs, which match the encryptions of the result of com-
putations if they are performed on the corresponding plaintexts. This property
of HE affects the trust model of computation by eliminating the need for expos-
ing sensitive data to the party that performs the computation. As a result, HE
is particularly well suited for outsourced computation, untrusted cloud environ-
ments, and privacy-preserving data analytics. Fully Homomorphic Encryption
(FHE) supports arbitrary computation on the data while the types of compu-
tations in HE are limited. FHE offers some of the strongest privacy promises
among existing PETSs, as it ensures that data remains encrypted throughout
computation and does not rely on trust in the compute provider. Its trust
assumptions are typically minimal, involving a single untrusted server and a
well-defined cryptographic adversary model.

A simplified model of encrypted data processing in a client—server setting
is illustrated in Figure 1. In this model, client encrypts its input data and
sends it to cloud server. Then, the cloud server performs the computationally
intensive task directly on the encrypted data, without ever decrypting it. During
the execution of this task, homomorphic evaluation keys are used which are a
special type of public keys in FHE context. The cloud returns the resulting
output to the client in ciphertext form. This model is also referred to as end-
to-end security, as the data remains encrypted through both transmission and
processing. It is only decrypted by the client, who is considered as the owner of
the input and output data. As a result, the PET concern discussed in Section 2.1
is naturally addressed.

FHE was considered as the holy grail of cryptography. The first FHE con-
struction was introduced by Craig Gentry in his PhD thesis [11]. Despite the
previous HE schemes, Gentry’s solution was capable of supporting arbitrary



2. Homomorphic Evaluation

/

Client with secret o
decryption keys i
Server with public

homomorphic evaluation
keys

S 1. Encrypted Input

.Q) < ’

3. Encrypted Output

Figure 1: Simplified encrypted data processing model using homomorphic en-
cryption.

computation over encrypted data. Gentry’s approach achieved that by com-
bining the so-called somewhat homomorphic encryption with a bootstrapping
procedure to reduce accumulated noise. As a result, evaluation of circuits with
unbounded multiplicative depth became possible while preserving correctness
and security.

Gentry’s original construction was mainly of theoretical interest as its com-
putational overhead was extreme. However, it established the feasibility of FHE
and led to extensive research aimed at improving efficiency, security assump-
tions, and practicality of FHE. Subsequent schemes shifted toward more efficient
lattice-based constructions, utilizing hardness of Learning With Errors (LWE)
or Ring-LWE.

In todays world, the most widely used schemes are Brakerski—-Fan—Vercauteren
(BFV) [10, 4], BGV [5], CKKS (Cheon—Kim-Kim—-Song) [12], and TFHE (Fast
Fully Homomorphic Encryption over the Torus) [7]. The BFV scheme supports
exact arithmetic over integers and is well suited for applications requiring pre-
cise computation, such as encrypted database queries [8, 15] and integer-based
analytics.

For applications involving real-valued or approximate computation, the CKKS
scheme is a dominant option. CKKS supports approximate arithmetic on en-
crypted floating-point—like values, allowing efficient evaluation of linear algebra
operations with controlled numerical error. This design makes CKKS particu-
larly attractive for privacy-preserving neural network inference and signal pro-
cessing tasks, where exact integer arithmetic is not needed.

In contrast to arithmetic-circuit—oriented schemes such as BFV, BGV, and
CKKS, TFHE focuses on efficient evaluation of Boolean gates with fast boot-
strapping. TFHE enables low-latency evaluation of binary circuits by perform-
ing bootstrapping at the level of individual gates. Consequently, it is well suited
for applications involving control logic, comparisons, and branching. While
TFHE is an outstanding solution in Boolean algebra and latency for small cir-
cuits, it is generally less efficient for large-scale numerical computation compared
to arithmetic HE schemes.



4 Open Challenges & Research Gaps

Despite the substantial progress in the design and implementation of FHE,
several open challenges continue to limit its widespread adoption. The most
important limitation of FHE is its high computational cost relative to plaintext
computation. In particular, FHE-based data processing can introduce over-
heads of up to six orders of magnitude compared to plaintext processing [6].
This overhead arises primarily from data expansion of ciphertexts, expensive
polynomial arithmetic, and noise management operations such as bootstrap-
ping. Although advances such as batching, and optimized bootstrapping have
significantly improved performance, the evaluation of deep or complex circuits
remains computationally demanding.

The impact of computational overhead depends on the application domain.
While such overhead may be a blocker for real-time applications, it can be
tolerable in offline or batch-processing settings. For example, in the context
of Al, inference is typically a real-time operation where the latency is criti-
cal. However, model training is generally performed offline and can therefore
accommodate relatively higher computational delays.

To address practical issues in FHE, existing applications are usually adapted
to the constraints of FHE-friendly arithmetic. Developers usually redesign algo-
rithms to reduce multiplicative depth, avoid control flow branching, and operate
within restricted numeric domains, such as [21]. While compilers and high-level
frameworks, such as [22], aims to automate parts of this process, there is still
a gap between cryptographic primitives and efficient, general-purpose program-
ming models for FHE. Bridging this gap requires further research for structuring
computational tasks to minimize homomorphic cost.

Another asset for tackling the practical issues is hardware acceleration. FEx-
isting studies on hardware acceleration for Fully Homomorphic Encryption are
already rich. A wide range of acceleration approaches have been explored, in-
cluding the use of GPUs, FPGAs (field programmable gate arrays), and custom
hardware accelerators through ASICs (application specific integrated circuits)
[17, 2], with examples [24, 19], [1, 13, 23], and [18, 17, 2], respectively.

Energy consumption is another issue in practical FHE solutions, which is
closely related to computational overhead. Aligned with performance consider-
ations, FHE-based systems consume substantially more energy than their plain-
text counterparts. This fact raises concerns about scalability, cost, and also en-
vironmental impact. In cloud and data-center environments, energy efficiency
is a direct operational expense. There is a notable research gap in system-
atic evaluation of energy-per-operation metrics for FHE and in the develop-
ment of energy-aware parameter selection, scheduling, and hardware—software
co-optimization strategies. Addressing energy consumption will be critical for
making FHE viable beyond niche or high-value use cases.Key management is
another fundamental challenge in FHE deployments.

Managing the keys securely across distributed systems, and multiple users,
introduces significant complexity. Public evaluation keys can reach tens of
gigabytes in size for certain operations, such as bootstrapping. From a sys-



tems perspective, the absence of well-defined and standardized key manage-
ment frameworks represents a critical gap between cryptographic theory and
practical, deployable solutions. More particularly, in multi-party computation
settings, the mathematical structure of public and secret keys are revised, lead-
ing to approaches such as threshold FHE [3]. While these methods address
some trust concerns, they often require a trusted third party for key generation
and distribution. Therefore, they introduce additional trust assumptions that
are undesirable in many deployment scenarios. A well known application in the
multi-party FHE setting is federated learning [14].

5 Conclusion

We formalized the PET problem space and discussed the strengths of FHE
together with open challenges. Among PETs, FHE provides exceptional pri-
vacy guarantees and minimal trust requirements, enabling end-to-end secu-
rity.However, these advantages co-exist with practical challenges, including no-
table computational and memory overheads, leading to increased latency and
energy consumption. Overall, FHE is an outstanding option for use cases where
the associated performance and deployment costs can be tolerated in order to
leverage its strong privacy guarantees.

6 Acknowledgments

This document was prepared in the scope of the European Union Twinning
Project 101079319 (acronym enCRYPTON).

This document was prepared with the assistance of OpenAI’s ChatGPT for
language refinement and structural editing. The authors take full responsibility
for the technical content and conclusions.

References

[1] Agrawal, R., de Castro, L., Yang, G., Juvekar, C., Yazicigil, R., Chan-
drakasan, A., Vaikuntanathan, V., Joshi, A.: Fab: An fpga-based accel-
erator for bootstrappable fully homomorphic encryption. In: 2023 IEEE

International Symposium on High-Performance Computer Architecture
(HPCA). pp. 882-895. IEEE (2023)

[2] Aikata, A., Mert, A.C., Kwon, S., Deryabin, M., Roy, S.S.: Reed:
Chiplet-based accelerator for fully homomorphic encryption. arXiv preprint
arXiv:2308.02885 (2023)

[3] Asharov, G., Jain, A., Lépez-Alt, A., Tromer, E., Vaikuntanathan, V.,
Wichs, D.: Multiparty computation with low communication, computation
and interaction via threshold fhe. In: Annual International Conference on



[10]

[11]

the Theory and Applications of Cryptographic Techniques. pp. 483-501.
Springer (2012)

Brakerski, Z.: Fully homomorphic encryption without modulus switch-
ing from classical gapsvp. In: Annual cryptology conference. pp. 868-886.
Springer (2012)

Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomor-
phic encryption without bootstrapping. ACM Transactions on Computa-
tion Theory (TOCT) 6(3), 1-36 (2014)

Brynds, C., McLeod, P., Caccamise, L., Pal, A., Saiham, D., Rahman, S.,
Miguel, J.S., Wu, D.: Cryptoracle: A modular framework to characterize
fully homomorphic encryption. arXiv preprint arXiv:2510.03565 (2025)

Chilotti, I., Gama, N., Georgieva, M., Izabachéne, M.: TFHE: Fast fully ho-
momorphic encryption over the torus. In: Journal of Cryptology. Springer
(2019)

Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information
retrieval. Journal of the ACM (JACM) 45(6), 965981 (1998)

Dwork, C.: Differential privacy. In: International colloquium on automata,
languages, and programming. pp. 1-12. Springer (2006)

Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryp-
tion. Cryptology ePrint Archive (2012)

Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceed-
ings of the forty-first annual ACM symposium on Theory of computing. pp.
169-178 (2009)

J. H. Cheon, A. Kim, M.K., Song., Y.: Homomorphic encryption for arith-
metic of approximate numbers. In: Asiacrypt 2017. pp. 409-437. Springer
(2017)

Koger, E., Kirbiyik, S., Tosun, T., Alaybeyoglu, E., Savas, E.: Io-optimized
design-time configurable negacyclic seven-step ntt architecture for fhe ap-
plications. In: Proceedings of the Great Lakes Symposium on VLSI 2025.
pp. 14-21 (2025)

Li, T., Sahu, A.K., Talwalkar, A., Smith, V.: Federated learning: Chal-
lenges, methods, and future directions. IEEE signal processing magazine
37(3), 50-60 (2020)

Melchor, C.A., Barrier, J., Fousse, L., Killijian, M.O.: Xpir: Private in-
formation retrieval for everyone. Proceedings on Privacy Enhancing Tech-
nologies pp. 155-174 (2016)



[16]

[17]

[18]

Murthy, S., Bakar, A.A., Rahim, F.A., Ramli, R.: A comparative study of
data anonymization techniques. In: 2019 IEEE 5th Intl Conference on Big
Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High
Performance and Smart Computing,(HPSC) and IEEE Intl Conference on
Intelligent Data and Security (IDS). pp. 306-309. IEEE (2019)

Nabeel, M., Gamil, H., Soni, D., Ashraf, M., Gebremichael, M.A., Chielle,
E., Karri, R., Sanduleanu, M., Maniatakos, M.: Silicon-proven asic de-
sign for the polynomial operations of fully homomorphic encryption. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems 43(6), 1924-1928 (2024)

Ovichinnikov, D., Kavadia, H., Kudupudi, S.K.C., Rempel, I., Chadha, V.,
Franz, M., Master, P., Gentry, C., Kindler, D., Reyes, A., et al.: Resource
estimation of cggi and ckks scheme workloads on fractlcore computing fab-
ric. arXiv preprint arXiv:2510.16025 (2025)

Ozcan, A.S., Ayduman, C., Tirkoglu, E.R., Savas, E.: Homomorphic en-
cryption on gpu. IEEE Access 11, 84168-84186 (2023)

Paverd, A., Martin, A., Brown, I.: Modelling and automatically analysing
privacy properties for honest-but-curious adversaries. Tech. Rep (2014)

Song, C., Shi, X.: Reacthe: A homomorphic encryption friendly deep neu-
ral network for privacy-preserving biomedical prediction. Smart Health 32,
100469 (2024)

Stoian, A., Frery, J., Bredehoft, R., Montero, L., Kherfallah, C., Chevallier-
Mames, B.: Deep neural networks for encrypted inference with tfhe. In: In-
ternational Symposium on Cyber Security, Cryptology, and Machine Learn-
ing. pp. 493-500. Springer (2023)

Su, Y., Yang, B., Yang, C., Tian, L.: Fpga-based hardware accelerator for
leveled ring-lwe fully homomorphic encryption. IEEE Access 8, 168008—
168025 (2020)

Wang, W., Hu, Y., Chen, L., Huang, X., Sunar, B.: Accelerating fully
homomorphic encryption using gpu. In: 2012 IEEE conference on high
performance extreme computing. pp. 1-5. IEEE (2012)



